Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 11(8)2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398873

RESUMO

Disturbances in adipose tissue significantly contribute to the development of metabolic disorders, which are connected with hyperglycemia (HG) and underlain by epigenetics-based mechanisms. Therefore, we aimed to evaluate the effect of hyperglycemia on proliferating, differentiating and maturating human visceral pre/adipocytes (HPA-v). Three stages of cell culture were conducted under constant or variable glycemic conditions. Adipogenesis progress was assessed using BODIPY 505/515 staining. Lipid content typical for normal and hyperglycemic conditions of adipocytes was analyzed using Raman spectroscopy and imaging. Expression of adipogenic markers, PPARγ and C/EBPα, was determined at the mRNA and protein levels. We also examined expression of miRNAs proven to target PPARγ (miR-34a-5p) and C/EBPα (miR-137-3p), employing TaqMan Low-Density Arrays (TLDA) cards. Hyperglycemia altered morphology of differentiating HPA-v in relation to normoglycemia by accelerating the formation of lipid droplets and making their numbers and volume increase. Raman results confirmed that the qualitative and quantitative lipid composition under normal and hyperglycemic conditions were different, and that the number of lipid droplets increased in (HG)-treated cells. Expression profiles of both examined genes markedly changed either during adipogenesis under physiological and hyperglycemic conditions, orat particular stages of adipogenesis upon chronic and/or variable glycemia. Expression levels of PPARγ seemed to correspond to some expression changes of miR-34a-5p. miR-137-3p, whose expression was rather stable throughout the culture, did not seem to affect C/EBPα. Our observations revealed that chronic and intermittent hyperglycemia change the morphology of visceral pre/adipocytes during adipogenesis. Moreover, hyperglycemia may utilize miR-34a-5p to induce some expression changes in PPARγ.


Assuntos
Adipócitos/metabolismo , Adipogenia/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Hiperglicemia/genética , PPAR gama/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular/genética , Proliferação de Células/genética , Humanos , MicroRNAs/metabolismo
2.
Nutrients ; 10(11)2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445791

RESUMO

microRNAs are increasingly analyzed in adipogenesis, whose deregulation, especially visceral, contributes to the development of diabetes. Hyperglycemia is known to affect cells while occurring acutely and chronically. Therefore, we aimed to evaluate the effect of hyperglycemia on human visceral pre/adipocytes from the perspective of microRNAs. The relative expression of 78 microRNAs was determined by TaqMan Low Density Arrays at three stages of HPA-v adipogenesis conducted under normoglycemia, chronic, and intermittent hyperglycemia (30 mM). Hierarchical clustering/Pearson correlation revealed the relationship between various microRNAs' expression profiles, while functional analysis identified the genes and signaling pathways regulated by differentially expressed microRNAs. Hyperglycemia affected microRNAs' expression patterns during adipogenesis, and at the stage of pre-adipocytes, differentiated and matured adipocytes compared to normoglycemia. Interestingly, the changes that were evoked upon hyperglycemic exposure during one adipogenesis stage resembled those observed upon chronic hyperglycemia. At least 15 microRNAs were modulated during normoglycemic and/or hyperglycemic adipogenesis and/or upon intermittent/chronic hyperglycemia. Bioinformatics analysis revealed the involvement of these microRNAs in cell cycles, lipid metabolism, ECM⁻receptor interaction, oxidative stress, signaling of insulin, MAPK, TGF-ß, p53, and more. The obtained data suggests that visceral pre/adipocytes exposed to chronic/intermittent hyperglycemia develop a microRNAs' expression pattern, which may contribute to further visceral dysfunction, the progression of diabetic phenotype, and diabetic complications possibly involving "epi"-memory.


Assuntos
Adipócitos/fisiologia , Adipogenia/genética , Hiperglicemia/genética , MicroRNAs/metabolismo , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Gordura Intra-Abdominal/citologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...